Name: \_\_\_\_\_

# **Area Model Introduction**

#### Learning Goals

- 1. Define area by using an "Area Model" by using multiplication of two factors.
- 2. Use factors of a number to construct functions.
- 3. Discover factors of a given number and depict those numbers using the area model.

#### Instructions:

In this activity, the above questions are investigated. Complete this document by filling in data tables and writing complete responses.

This investigation has three phases:

- Exploration
- Explanation
- Challenge

# Procedure:

In this activity, we will further explore how to construct an area to represent a function. We will also define the area of functions when two factors are multiplied.

- 1. To access the simulation:
  - a. Type this website in: phet.colorado.edu
  - b. In the search bar type in: Area Model Introduction
  - c. Click on the **play** button
  - d. Select the "Multiply" tab

| Area Model Introduction |          |   |    |    |         |          |  |  |   |       |      |  |
|-------------------------|----------|---|----|----|---------|----------|--|--|---|-------|------|--|
|                         | 5        |   |    |    |         |          |  |  |   | 2     | 5    |  |
|                         | I        | 1 | 2  | 3  | 4       | 5        |  |  | 3 | 6     | 9    |  |
|                         | 3        | 6 | 7  | 8  | 9<br>14 | 10<br>15 |  |  |   | Ŭ     |      |  |
|                         | 1        |   | 12 | 13 | 14      | 15       |  |  |   | Parti | tion |  |
|                         | Multiply |   |    |    |         |          |  |  |   |       |      |  |

2. Your computer screen should now look like this. Take a minute to examine the different parts of the simulation before you explore.



#### Explore

- 3. Using the factors on the left, highlighted in blue and red, record the expression and its product.
  - a. Factors = \_\_\_\_X\_\_\_\_
  - b. Area = \_\_\_\_\_
- 4. Click each arrow, blue and red, once. Record your factors and their area in the table below for each trial.

| Factor X Factor | Area |
|-----------------|------|
|                 |      |
|                 |      |

Describe your results for each trial. How does your picture change as the factors change?

| 5. Using the <b>blue arrow,</b> select "3". | Factors |
|---------------------------------------------|---------|
| 6. Using the <b>red arrow,</b> select "2"   | Factors |

7. Given the factors below:

Step 1: Construct the array model using the blue and red arrows.

Step 2: Draw the array model in the space provided.

Step 3: Number the boxes in the figure to demonstrate the model.

Step 4: Record the product (Area) of the array.



|   | 4 x 2 |   |  |   |  |  |  |  |
|---|-------|---|--|---|--|--|--|--|
|   |       |   |  |   |  |  |  |  |
| - |       | _ |  | - |  |  |  |  |
|   |       |   |  |   |  |  |  |  |
|   |       |   |  |   |  |  |  |  |
| - |       |   |  | - |  |  |  |  |
|   |       |   |  |   |  |  |  |  |
|   |       |   |  |   |  |  |  |  |
|   |       |   |  |   |  |  |  |  |
|   |       |   |  |   |  |  |  |  |

Describe your results for each trial. How do the numbers you input to the machine compare the output numbers?

# Explain: Part A

In multiplication factors are numbers we can multiply together to get another number.

An **area model** is a rectangular diagram or **model** used for multiplication and division problems, in which the factors or the quotient and divisor define the length and width of the rectangle.

# Directions: For each question set, determine the area of the given models.

8. Determine the area of the models using the given factors and array model. Draw what you see.



| Factors | Array Model | Area/Product |
|---------|-------------|--------------|
| 6 X 8   |             |              |
| 10 X 5  |             |              |
| 4 X 7   |             |              |

# Explain: Part B

Now that you've been introduced to factors and have used them to find areas, come up with any product and use different arrays to model the factors. A **product**, also known as **area**, is the number you get when you have multiplied two factors together.

- Choose a product:
  - o <mark>Ex: 20</mark>
- Think of how many factors can be multiplied together to give you your given product.
  *Ex: 4 X 5 and 2 X 10.*
- Use the area model to match each set of factors.



| Ø | F  |    |    |    | 1       | 0  |    |    |    |    |
|---|----|----|----|----|---------|----|----|----|----|----|
|   | 1  | 2  | 3  | 4  | 5       | 6  | 7  | 8  | 9  | 10 |
| 2 | 11 | 12 | 13 | 14 | 5<br>15 | 16 | 17 | 18 | 19 | 20 |

Notice that the product (area) both cover 20 squares in total. These are just two different ways to demonstrate this area.

9. Let's try working backward! List a product below (*less than 100*). Draw two different array models that can

| Products | Factors | Array Model |  |  |  |  |
|----------|---------|-------------|--|--|--|--|
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |
|          |         |             |  |  |  |  |

# Exit Ticket:

- 1. What is an area model?
- 2. Choose any two factors, each one less than 10, and represent it in the area model below.

|  | _ |  |  |
|--|---|--|--|
|  | _ |  |  |
|  | _ |  |  |
|  |   |  |  |
|  |   |  |  |